“穷竭法作为微积分的雏形,被用来处理光滑的弯曲图形,包括圆和抛物线等等。”
“但古希腊时代的阿基米德仅仅把这种无线切割和重组的思想用于处理静止的物体。”
“一个圆被无限切割成没有面积的直线,将这无穷条直线重组成矩形计算出面积。”
“一个球体被无限切割成没有体积的薄片,将这无穷块薄片重组成球体的体积。”
“将穷竭法与芝诺有关于静止与运动的悖论相结合,这种无限切割的思想才能显现出其真正的力量。”
“回到我们最初思考的穿过一条街道的问题,也就是所谓点动成线、线动成面、面动成体的常识。”
“很显然,这种对静止物体无限切割和重组的过程与物体的连续运动过程是一样的,物体随着时间流逝而运动的轨迹就如同增加了一个空间维度。”
“微积分与原始的穷竭法最大的不同之处就在于,这种新的工具被用于描述世间万物的运动过程。”
“这就是我们接下来要去的世界,现代物理学的开端,万物从静止走向运动的时代,也是第二次数学危机的时代。”
李恒将书架上这本记录着穷竭法与圆周率的旧书合上。
“当然,在去往那个世界之前,还需要先打败毕达哥拉斯。”
阿基里斯胸前那枚被改造成螺旋钻头状的粉白色钥匙缓缓漂浮而起,在那表面的螺旋状花纹中,布满了密密麻麻的数字。
那是无限循环的o。99…,在螺旋的顶部,这个无限小数有了一个确切的末尾,表明它在经过无限次计算以后,结果精确的等于1。
“第一次数学危机带来的结果就是不可数尽的无穷小数,现在你已经明白了无理数是什么。”
“这枚螺旋钥匙已经容纳了一个完整的无穷序列,它被改造成了一台芝诺机,能完成无限次步骤的计算,具备实在无穷的力量。”
“芝诺机是图灵机的其中一种类型,有关于图灵机和图灵机的力量层级,理解它们需要等到第三次数学危机以后。”
“人类数学的展史就是研究无穷的历史,三次数学危机都与无穷有关,理解了这三次危机,你才能理解无穷和连续统究竟是什么。”
阿基里斯伸手握住眼前这枚粉白色的螺旋钥匙,眼前看到的视野瞬间被扩张到一个自己难以形容的状态。
她看到了一个平坦的平面上两条无限延伸的平行线在无穷远处交汇在同一点。
她看到了日取其半、万世不竭的木棍在无穷次切割后被找到了不可分割的基本组成部分。
无限可分的微观世界在这一瞬间不再无穷无尽,只存在于形而上的理念世界中的实无穷似乎突然变成了直观可见的清晰模样。
就像是隐藏在o。99…无限循环的终点处那个最简单的1一样,在抵达无穷的那一刻,难以理解的复杂事物突然变得完美而简洁。
于是,阿基里斯的眼中倒映出隐藏在那个微观世界里晦暗不明、变换不定的阴影。
这个变换不定的阴影像是藏在深渊缝隙之中长着纤长触须的头足类生物。
那无数纤细的触须从深渊中探出,连接在其他的无数生物身体上,汲取着他们的力量。
这团阴影很小很小,那些纤细的触手更是远远小于上层世界的最小量子泡沫。
但它拥有的力量却恰恰相反。
就像是传说中的奇点一样,这个隐藏在黑暗深渊间隙中的微小生物,掌握着远那些大体型生物的力量。
“那就是毕达哥拉斯?”
她心中有些吃惊,那个如同幽魂一样的可怖阴影看起来并不比之前被她吃掉的那只莎布尼古拉斯好看多少。
比起她手中掌握的完美而简洁的实无穷,似乎这个还局限在有限世界里的毕达哥拉斯更为可怖和不可名状。
“无限的事物未必比有限的更复杂,人类研究无限宇宙找到的规律正是那些最简洁最美丽的。”
“毕达哥拉斯已经走上了错路,变成了寻找无穷之路上的一只怪物。”
“干掉他,或者吃掉他,然后我们就去下一站。”
李恒看着那团在深渊中蠕动的黑暗阴影,即使是这个世界里的神圣兄弟会,也想不到他们的领袖已经变成了这种不成人形的丑陋怪物。
两人之前遇到的那只营养是中子星三十二亿倍的莎布尼古拉斯并不是偶然。
那只不太可爱的小生物就是受到毕达哥拉斯的意志影响而诞生的东西。
在古希腊人的认知里,无穷是充满混乱的、不可理解的东西。
所谓无理数,就是不符合人类理性的数字。
这种认知在毕达哥拉斯寻找无穷的过程中化为了坚不可摧的信念。
它塑造了这个不允许无穷存在的世界,一个永远被困在第一次数学危机中的世界。
同时,因为自身的这种信念,在寻找无理数的过程中,毕达哥拉斯本人也随着越来越靠近无穷变成了这种不成人形的诡异模样。
虽然称不上是不可名状,但却很符合人类眼里的古神形貌。
“吃?”
阿基里斯回忆了一下那莎布尼古拉斯烤焦鸡蛋的味道,微微摇了摇头。
她举起手中那枚粉白色的螺旋状钥匙,将它像是钻头一样轻轻旋转。
螺旋钥匙的尖端位置,那个没有大小的点以无穷的力量破开了层层阻隔,将无限可分的有理数世界瞬间切割到尽头。